Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Clin Microbiol ; 62(4): e0001924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38483169

RESUMO

Tongue dorsum swabbing is a potential alternative to sputum collection for tuberculosis (TB) testing. Previous studies showed that Cepheid Xpert MTB/RIF Ultra (Xpert Ultra) can detect Mycobacterium tuberculosis DNA on tongue swabs stored in buffer, with 72% sensitivity and 100% specificity relative to a sputum microbiological reference standard (sputum MRS). The present study evaluated a more convenient sample collection protocol (dry swab storage), combined with streamlined sample processing protocols, for evaluating two commercial TB diagnostic tests: Xpert Ultra and Molbio Truenat MTB Ultima (MTB Ultima). Copan FLOQSwabs were self-collected or collected by study workers from 321 participants in Western Cape, South Africa. All participants had symptoms suggestive of TB, and 245 of them had sputum MRS-confirmed TB (by sputum MGIT culture and/or Xpert Ultra). One tongue swab per participant was tested on Xpert Ultra, and another tongue swab was tested with MTB Ultima. Xpert Ultra was 75.5% sensitive and 100% specific relative to sputum MRS, similar to previous methods that used swabs stored in buffer. MTB Ultima was 71.6% sensitive and 96.9% specific relative to sputum MRS. When sample lysates that were false-negative or invalid by MTB Ultima were frozen, thawed, and re-tested, MTB Ultima sensitivity rose to 79.1%. Both tests were more sensitive with swabs from participants with higher sputum Xpert Ultra semi-quantitative results. Although additional development could improve diagnostic accuracy, these results further support tongue swabs as easy-to-collect samples for TB testing. IMPORTANCE: Tongue dorsum swabbing is a promising alternative to sputum collection for tuberculosis (TB) testing. Our results lend further support for tongue swabs as exceptionally easy-to-collect samples for high-throughput TB testing.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Humanos , Tuberculose Pulmonar/diagnóstico , Mycobacterium tuberculosis/genética , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose/microbiologia , África do Sul , Escarro/microbiologia
2.
Lancet Microbe ; 4(12): e972-e982, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37931638

RESUMO

BACKGROUND: Bedaquiline is a life-saving tuberculosis drug undergoing global scale-up. People at risk of weak tuberculosis drug regimens are a priority for novel drug access despite the potential source of Mycobacterium tuberculosis-resistant strains. We aimed to characterise bedaquiline resistance in individuals who had sustained culture positivity during bedaquiline-based treatment. METHODS: We did a retrospective longitudinal cohort study of adults (aged ≥18 years) with culture-positive pulmonary tuberculosis who received at least 4 months of a bedaquiline-containing regimen from 12 drug-resistant tuberculosis treatment facilities in Cape Town, South Africa, between Jan 20, 2016, and Nov 20, 2017. Sputum was programmatically collected at baseline (ie, before bedaquiline initiation) and each month to monitor treatment response per the national algorithm. The last available isolate from the sputum collected at or after 4 months of bedaquiline was designated the follow-up isolate. Phenotypic drug susceptibility testing for bedaquiline was done on baseline and follow-up isolates in MGIT960 media (WHO-recommended critical concentration of 1 µg/mL). Targeted deep sequencing for Rv0678, atpE, and pepQ, as well as whole-genome sequencing were also done. FINDINGS: In total, 40 (31%) of 129 patients from an estimated pool were eligible for this study. Overall, three (8%) of 38 patients assessable by phenotypic drug susceptibility testing for bedaquiline had primary resistance, 18 (47%) gained resistance (acquired or reinfection), and 17 (45%) were susceptible at both baseline and follow-up. Several Rv0678 and pepQ single-nucleotide polymorphisms and indels were associated with resistance. Although variants occurred in Rv0676c and Rv1979c, these variants were not associated with resistance. Targeted deep sequencing detected low-level variants undetected by whole-genome sequencing; however, none were in genes without variants already detected by whole-genome sequencing. Patients with baseline fluoroquinolone resistance, clofazimine exposure, and four or less effective drugs were more likely to have bedaquiline-resistant gain. Resistance gain was primarily due to acquisition; however, some reinfection by resistant strains occurred. INTERPRETATION: Bedaquiline-resistance gain, for which we identified risk factors, was common in these programmatically treated patients with sustained culture positivity. Our study highlights risks associated with implementing life-saving new drugs and shows evidence of bedaquiline-resistance transmission. Routine drug susceptibility testing should urgently accompany scale-up of new drugs; however, rapid drug susceptibility testing for bedaquiline remains challenging given the diversity of variants observed. FUNDING: Doris Duke Charitable Foundation, US National Institute of Allergy and Infectious Diseases, South African Medical Research Council, National Research Foundation, Research Foundation Flanders, Stellenbosch University Faculty of Medicine Health Sciences, South African National Research Foundation, Swiss National Science Foundation, and Wellcome Trust.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Adulto , Humanos , Adolescente , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , África do Sul/epidemiologia , Mycobacterium tuberculosis/genética , Estudos Retrospectivos , Testes de Sensibilidade Microbiana , Estudos Longitudinais , Reinfecção/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose/tratamento farmacológico
3.
medRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873199

RESUMO

Tongue dorsum swabbing is a potential alternative to sputum collection for tuberculosis (TB) testing. Previous studies showed that Cepheid Xpert® MTB/RIF Ultra (Xpert Ultra) can detect Mycobacterium tuberculosis (MTB) DNA in tongue swabs stored in buffer, with 72% sensitivity and 100% specificity relative to a sputum microbiological reference standard (sputum MRS). The present study evaluated a more convenient sample collection protocol (dry swab storage), combined with streamlined sample processing protocols, for side-by-side analysis using two commercial TB diagnostic tests: Xpert Ultra and Molbio Truenat® MTB Ultima (MTB Ultima). Copan FLOQSwabs were self-collected, or collected by study workers, from 321 participants in Western Cape, South Africa. All participants had symptoms suggestive of TB, and 245 of them had sputum MRS-confirmed TB (by sputum culture and/or Xpert Ultra). One tongue swab per participant was tested on Xpert Ultra and another tongue swab was tested with MTB Ultima. Xpert Ultra was 75.4% sensitive and 100% specific, and MTB Ultima was 71.6% sensitive and 96.9% specific, relative to sputum MRS. When sample lysates that were false-negative by MTB Ultima were frozen, thawed, and re-tested, MTB Ultima sensitivity rose to 79.1%. Both tests were more sensitive with swabs from participants with higher sputum Xpert semi-quantitative results. The protocol for Xpert Ultra enabled fast and easy testing of dry-stored swabs with no loss of accuracy relative to previous methods. MTB Ultima testing of dry-stored swabs exhibited comparable performance to Xpert Ultra. These results further support tongue swabs as easy-to-collect samples for high-throughput TB testing.

4.
PLOS Glob Public Health ; 3(8): e0001488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531333

RESUMO

The surge of the COVID-19 pandemic challenged health services globally, and in Lesotho, the HIV and tuberculosis (TB) services were similarly affected. Integrated, multi-disease diagnostic services were proposed solutions to mitigate these disruptions. We describe and evaluate the effect of an integrated, hospital-based COVID-19, TB and HIV screening and diagnostic model in two rural districts in Lesotho, during the period between December 2020 and August 2022. Adults, hospital staff, and children above 5 years attending two hospitals were pre-screened for COVID-19 and TB symptoms. After a positive pre-screening, participants were offered to enroll in a service model that included clinical evaluation, chest radiography, SARS-CoV-2, TB, and HIV testing. Participants diagnosed with COVID-19, TB, or HIV were contacted after 28 days to evaluate their health status and linkage to HIV and/or TB care services. Of the 179160 participants pre-screened, 6623(3.7%) pre-screened positive, and 4371(66%) were enrolled in this service model. Of the total 458 diagnoses, only 17 happened in children. One positive rapid antigen test for SARS-CoV-2 was found per 11 participants enrolled, one Xpert-positive TB case was diagnosed per 85 people enrolled, and 1 new HIV diagnosis was done per 182 people enrolled. Of the 321(82.9%) participants contacted after 28 days of diagnosis, 304(94.7%) reported to be healthy. Of the individuals that were newly diagnosed with HIV or TB, 18/24(75.0%) and 46/51(90.1%) started treatment within 28 days of the diagnosis. This screening and diagnostic model successfully maintained same-day, integrated COVID-19, TB, and HIV testing services, despite frequent disruptions caused by the surge of COVID-19 waves, healthcare seeking patterns, and the volatile context (social measures, travel restrictions, population lockdowns). There were positive effects in avoiding diagnostic delays and ensuring linkage to services, however, diagnostic yields for adults and children were low. To inform future preparedness plans, research will need to identify essential health interventions and how to optimize them along each phase of the emergency response.

5.
PLoS One ; 18(8): e0290496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616318

RESUMO

BACKGROUND: Access to drug resistant testing for tuberculosis (TB) remains a challenge in high burden countries. Recently, the World Health Organization approved the use of several moderate complexity automated nucleic acid amplification tests (MC-NAAT) that have performance profiles suitable for placement in a range of TB laboratory tiers to improve drug susceptibility tests (DST) coverage. METHODS: We conducted cost analysis of two MC-NAATs with different testing throughput: Lower Throughput (LT, < 24 tests per run) and Higher Throughput (HT, upto 90+ tests per run) for placement in a hypothetical laboratory in a resource limited setting. We used per-test cost as the main indicator to assess 1) drivers of cost by resource types and 2) optimized levels of annual testing volumes for the respective MC-NAATs. RESULTS: The base-case per test cost of $18.52 (range: $13.79 - $40.70) for LT test and $15.37 (range: $9.61 - $37.40) for HT test. Per test cost estimates were most sensitive to the number of testing days per week, followed by equipment costs and TB-specific workloads. In general, HT NAATs were cheaper at all testing volume levels, but at lower testing volumes (less than 2,000 per year) LT tests can be cheaper if the durability of the testing system is markedly better and/or procured equipment costs are lower than that of HT NAAT. CONCLUSION: Assuming equivalent performance and infrastructural needs, placement strategies for MC-NAATs need to be prioritized by laboratory system's operational factors, testing demands, and costs.


Assuntos
Vacinas Anticâncer , Mycobacterium tuberculosis , Tuberculose , Humanos , Testes de Sensibilidade Microbiana , Custos e Análise de Custo , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico
7.
PLOS Glob Public Health ; 3(6): e0001555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267241

RESUMO

Serological assays have been used in seroprevalence studies to inform the dynamics of COVID-19. Lateral flow immunoassay (LFIA) tests are a very practical technology to use for this objective; however, one of their challenges may be variable diagnostic performance. Given the numerous available LFIA tests, evaluation of their accuracy is critical before real-world implementation. We performed a retrospective diagnostic evaluation study to independently determine the diagnostic accuracy of 4 different antibody-detection LFIA tests: Now Check (Bionote), CareStart (Access bio), Covid-19 BSS (Biosynex) and OnSite (CTK Biotech). The sample panel was comprised of specimens collected and stored in biobanks; specifically, specimens that were RT-PCR positive for SARS-CoV-2 collected at various times throughout the COVID-19 disease course and those that were collected before the pandemic, during 2018 or earlier, from individuals with upper respiratory symptoms but were negative for tuberculosis. Clinical performance (sensitivity and specificity) was analyzed overall, and subset across individual antibody isotypes, and days from symptoms onset. A very high specificity (98% - 100%) was found for all four tests. Overall sensitivity was variable, ranging from 29% [95% CI: 21%-39%] to 64% [95% CI: 54%-73%]. When considering detection of IgM only, the highest sensitivity was 42% [95% CI: 32%-52%], compared to 57% [95% CI: 47%-66%] for IgG only. When the analysis was restricted to at least 15 days since symptom onset, across any isotype, the sensitivity reached 90% for all four brands. All four LFIA tests proved effective for identifying COVID-19 antibodies when two conditions were met: 1) at least 15 days have elapsed since symptom onset and 2) a sample is considered positive when either IgM or IgG is present. With these considerations, the use of this assays could help in seroprevalence studies or further exploration of its potential uses.

8.
J Clin Virol ; 165: 105498, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329842

RESUMO

BACKGROUND: Concerns around accuracy and performance of rapid antigen tests continue to be raised with the emergence of new SARS-CoV-2 variants. OBJECTIVE: To evaluate the performance of two widely used SARS-CoV-2 rapid antigen tests during BA.4/BA.5 SARS-CoV-2 wave in South Africa (May - June 2022). STUDY DESIGN: A prospective field evaluation compared the SARS-CoV-2 Antigen Rapid test from Hangzhou AllTest Biotech (nasal swab) and the Standard Q COVID-19 Rapid Antigen test from SD Biosensor (nasopharyngeal swab) to the Abbott RealTime SARS-CoV-2 assay (nasopharyngeal swab) on samples collected from 540 study participants. RESULTS: Overall 28.52% (154/540) were SARS-CoV-2 RT-PCR positive with median cycle number value of 12.30 (IQR 9.30-19.40). Out of the 99 successfully sequenced SARS-CoV-2 positive samples, 18 were classified as BA.4 and 56 were classified as BA.5. The overall sensitivities of the AllTest SARS-CoV-2 Ag test and Standard Q COVID-19 Ag test were 73.38% (95% CI 65.89-79.73) and 74.03% (95% CI 66.58-80.31) and their specificities were 97.41% (95% CI 95.30-98.59) and 99.22% (95% CI 97.74-99.74) respectively. Sensitivity was >90% when the cycle number value was <20. The sensitivity of both rapid tests was >90% in samples infected with Omicron sub-lineage BA.4 and BA.5. CONCLUSION: Accuracy of tested rapid antigen tests that target the nucleocapsid SARS-CoV-2 protein, were not adversely affected by BA.4 and BA.5 Omicron sub-variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , África do Sul , COVID-19/diagnóstico , Bioensaio , Proteínas do Nucleocapsídeo , Sensibilidade e Especificidade
9.
Microbiol Spectr ; 11(3): e0504422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212699

RESUMO

The COVID-19 pandemic has given rise to numerous commercially available antigen rapid diagnostic tests (Ag-RDTs). To generate and to share accurate and independent data with the global community requires multisite prospective diagnostic evaluations of Ag-RDTs. This report describes the clinical evaluation of the OnSite COVID-19 rapid test (CTK Biotech, CA, USA) in Brazil and the United Kingdom. A total of 496 paired nasopharyngeal (NP) swabs were collected from symptomatic health care workers at Hospital das Clínicas in São Paulo, Brazil, and 211 NP swabs were collected from symptomatic participants at a COVID-19 drive-through testing site in Liverpool, United Kingdom. Swabs were analyzed by Ag-RDT, and results were compared to quantitative reverse transcriptase PCR (RT-qPCR). The clinical sensitivity of the OnSite COVID-19 rapid test in Brazil was 90.3% (95% confidence interval [CI], 75.1 to 96.7%) and in the United Kingdom was 75.3% (95% CI, 64.6 to 83.6%). The clinical specificity in Brazil was 99.4% (95% CI, 98.1 to 99.8%) and in the United Kingdom was 95.5% (95% CI, 90.6 to 97.9%). Concurrently, analytical evaluation of the Ag-RDT was assessed using direct culture supernatant of SARS-CoV-2 strains from wild-type (WT), Alpha, Delta, Gamma, and Omicron lineages. This study provides comparative performance of an Ag-RDT across two different settings, geographical areas, and populations. Overall, the OnSite Ag-RDT demonstrated a lower clinical sensitivity than claimed by the manufacturer. The sensitivity and specificity from the Brazil study fulfilled the performance criteria determined by the World Health Organization, but the performance obtained from the UK study failed to do. Further evaluation of Ag-RDTs should include harmonized protocols between laboratories to facilitate comparison between settings. IMPORTANCE Evaluating rapid diagnostic tests in diverse populations is essential to improving diagnostic responses as it gives an indication of the accuracy in real-world scenarios. In the case of rapid diagnostic testing within this pandemic, lateral flow tests that meet the minimum requirements for sensitivity and specificity can play a key role in increasing testing capacity, allowing timely clinical management of those infected, and protecting health care systems. This is particularly valuable in settings where access to the test gold standard is often restricted.


Assuntos
COVID-19 , Humanos , Brasil , COVID-19/diagnóstico , Pandemias , Estudos Prospectivos , SARS-CoV-2 , Reino Unido , Biotecnologia , Teste para COVID-19
10.
PLoS One ; 18(3): e0278653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36862684

RESUMO

OBJECTIVES: To assess the real-world diagnostic performance of nasal and nasopharyngeal swabs for SD Biosensor STANDARD Q COVID-19 Antigen Rapid Diagnostic Test (Ag-RDT). METHODS: Individuals ≥5 years with COVID-19 compatible symptoms or history of exposure to SARS-CoV-2 presenting at hospitals in Lesotho received two nasopharyngeal and one nasal swab. Ag-RDT from nasal and nasopharyngeal swabs were performed as point-of-care on site, the second nasopharyngeal swab used for polymerase chain reaction (PCR) as the reference standard. RESULTS: Out of 2198 participants enrolled, 2131 had a valid PCR result (61% female, median age 41 years, 8% children), 84.5% were symptomatic. Overall PCR positivity rate was 5.8%. The sensitivity for nasopharyngeal, nasal, and combined nasal and nasopharyngeal Ag-RDT result was 70.2% (95%CI: 61.3-78.0), 67.3% (57.3-76.3) and 74.4% (65.5-82.0), respectively. The respective specificity was 97.9% (97.1-98.4), 97.9% (97.2-98.5) and 97.5% (96.7-98.2). For both sampling modalities, sensitivity was higher in participants with symptom duration ≤ 3days versus ≤ 7days. Agreement between nasal and nasopharyngeal Ag-RDT was 99.4%. CONCLUSIONS: The STANDARD Q Ag-RDT showed high specificity. Sensitivity was, however, below the WHO recommended minimum requirement of ≥ 80%. The high agreement between nasal and nasopharyngeal sampling suggests that for Ag-RDT nasal sampling is a good alternative to nasopharyngeal sampling.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Feminino , Humanos , Adulto , Masculino , Lesoto , COVID-19/diagnóstico , Nariz , Nasofaringe
11.
PLoS One ; 18(3): e0281925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36867620

RESUMO

OBJECTIVES: In order to generate independent performance data regarding accuracy of COVID-19 antigen-based rapid diagnostic tests (Ag-RDTs), prospective diagnostic evaluation studies across multiple sites are required to evaluate their performance in different clinical settings. This report describes the clinical evaluation the GENEDIA W COVID-19 Ag Device (Green Cross Medical Science Corp., Chungbuk, Korea) and the ActiveXpress+ COVID-19 Complete Testing Kit (Edinburgh Genetics Ltd, UK), in two testing sites Peru and the United Kingdom. METHODS: Nasopharyngeal swabs collected from 456 symptomatic patients at primary points of care in Lima, Peru and 610 symptomatic participants at a COVID-19 Drive-Through testing site in Liverpool, England were analyzed by Ag-RDT and compared to RT-PCR. Analytical evaluation of both Ag-RDTs was assessed using serial dilutions of direct culture supernatant of a clinical SARS-CoV-2 isolate from the B.1.1.7 lineage. RESULTS: For GENEDIA brand, the values of overall sensitivity and specificity were 60.4% [95% CI 52.4-67.9%], and 99.2% [95% CI 97.6-99.7%] respectively; and for Active Xpress+ the overall values of sensitivity and specificity were 66.2% [95% CI 54.0-76.5%], and 99.6% [95% CI 97.9-99.9%] respectively. The analytical limit of detection was determined at 5.0 x 102 pfu/ml what equals to approximately 1.0 x 104 gcn/ml for both Ag-RDTs. The UK cohort had lower median Ct values compared to that of Peru during both evaluations. When split by Ct, both Ag-RDTs had optimum sensitivities at Ct<20 (in Peru; 95% [95% CI 76.4-99.1%] and 100.0% [95% CI 74.1-100.0%] and in the UK; 59.2% [95% CI 44.2-73.0%] and 100.0% [95% CI 15.8-100.0%], for the GENDIA and the ActiveXpress+, respectively). CONCLUSIONS: Whilst the overall clinical sensitivity of the Genedia did not meet WHO minimum performance requirements for rapid immunoassays in either cohort, the ActiveXpress+ did so for the small UK cohort. This study illustrates comparative performance of Ag-RDTs across two global settings and considers the different approaches in evaluation methods.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Peru , Estudos Prospectivos , Reino Unido , Teste para COVID-19
12.
Emerg Microbes Infect ; 12(1): 2178243, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36752055

RESUMO

Diagnostic development must occur in parallel with drug development to ensure the longevity of new treatment compounds. Despite an increasing number of novel and repurposed anti-tuberculosis compounds and regimens, there remains a large number of drugs for which no rapid and accurate molecular diagnostic option exists. The lack of rapid drug susceptibility testing for linezolid, bedaquiline, clofazimine, the nitroimidazoles (i.e pretomanid and delamanid) and pyrazinamide at any level of the healthcare system compromises the effectiveness of current tuberculosis and drug-resistant tuberculosis treatment regimens. In the context of current WHO tuberculosis treatment guidelines as well as promising new regimens, we identify the key diagnostic gaps for initial and follow-on tests to diagnose emerging drug resistance and aid in regimen selection. Additionally, we comment on potential gene targets for inclusion in rapid molecular drug susceptibility assays and sequencing assays for novel and repurposed drug compounds currently prioritized in current regimens, and evaluate the feasibility of mutation detection given the design of existing technologies. Based on current knowledge, we also propose design priorities for next generation molecular assays to support triage of tuberculosis patients to appropriate and effective treatment regimens. We encourage assay developers to prioritize development of these key molecular assays and support the continued evolution, uptake, and utility of sequencing to build knowledge of tuberculosis resistance mechanisms and further inform rapid treatment decisions in order to curb resistance to critical drugs in current regimens and achieve End TB targets.Trial registration: ClinicalTrials.gov identifier: NCT05117788..


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Testes de Sensibilidade Microbiana , Patologia Molecular , Mycobacterium tuberculosis/genética , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
13.
J Mol Diagn ; 25(1): 46-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243289

RESUMO

Four moderate-complexity automated nucleic acid amplification tests for the diagnosis of tuberculosis are reported as having laboratory analytical and clinical performance similar to that of the Cepheid Xpert MTB/RIF assay. These assays are the Abbott RealTime MTB and RealTime MTB RIF/INH Resistance, Becton Dickinson MAX MDR-TB, the Hain Lifescience/Bruker FluoroType MTBDR, and the Roche cobas MTB and MTB RIF/INH assays. The study compared feasibility, ease of use, and operational characteristics of these assays/platforms. Manufacturer input was obtained for technical characteristics. Laboratory operators were requested to complete a questionnaire on the assays' ease of use. A time-in-motion analysis was also undertaken for each platform. For ease-of-use and operational requirements, the BD MAX MDR-TB assay achieved the highest scores (86% and 90%) based on information provided by the user and manufacturer, respectively, followed by the cobas MTB and MTB-RIF/INH assay (68% and 86%), the FluoroType MTBDR assay (67% and 80%), and the Abbott RT-MTB and RT MTB RIF/INH assays (64% and 76%). The time-in-motion analysis revealed that for 94 specimens, the RealTime MTB assay required the longest processing time, followed by the cobas MTB assay and the FluoroType MTBDR assay. The BD MAX MDR-TB assay required 4.6 hours for 22 specimens. These diagnostic assays exhibited different strengths and weaknesses that should be taken into account, in addition to affordability, when considering placement of a new platform.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Tuberculose , Humanos , Rifampina/farmacologia , Isoniazida/farmacologia , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/diagnóstico , Estudos de Viabilidade , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Técnicas de Amplificação de Ácido Nucleico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Organização Mundial da Saúde
14.
Clin Infect Dis ; 76(3): e920-e929, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35788278

RESUMO

BACKGROUND: Rapid tuberculosis (TB) drug susceptibility testing (DST) is crucial. Genotype MTBDRsl is a widely deployed World Health Organization (WHO)-endorsed assay. Programmatic performance data, including non-actionable results from smear-negative sputum, are scarce. METHODS: Sputa from Xpert MTB/RIF individuals (n = 951) were routinely-tested using Genotype MTBDRplus and MTBDRsl (both version 2). Phenotypic DST was the second-line drug reference standard. Discrepant results underwent Sanger sequencing. FINDINGS: 89% (849 of 951) of individuals were culture-positive (56%, 476 of 849 smear-negative). MTBDRplus had at least 1 nonactionable result (control and/or TB-detection bands absent or invalid, precluding resistance reporting) in 19% (92 of 476) of smear-negatives; for MTBDRsl, 40% (171 of 427) were nonactionable (28%, 120 of 427 false-negative TB; 17%, 51 of 427 indeterminate). In smear-negatives, MTBDRsl sensitivity for fluoroquinolones was 84% (95% confidence interval, 67%-93), 81% (54%-95%) for second-line injectable drugs, and 57% (28%-82%) for both. Specificities were 93% (89%-98%), 88% (81%-93%), and 97% (91%-99%), respectively. Twenty-three percent (172 of 746) of Xpert rifampicin-resistant specimens were MTBDRplus isoniazid-susceptible. Days-to-second-line-susceptibility reporting with the programmatic advent of MTBDRsl improved (6 [5-7] vs 37 [35-46]; P < .001). CONCLUSIONS: MTBDRsl did not generate a result in 4 of 10 smear-negatives, resulting in substantial missed resistance. However, if MTBDRsl generates an actionable result, that is accurate in ruling-in resistance. Isoniazid DST remains crucial. This study provides real-world, direct, second-line susceptibility testing performance data on non-actionable results (that, if unaccounted for, cause an overestimation of test utility), accuracy, and care cascade impact.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Isoniazida/farmacologia , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Rifampina/farmacologia , Tuberculose/diagnóstico , Escarro , Sensibilidade e Especificidade , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico
15.
Microbiol Spectr ; 10(6): e0201222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448777

RESUMO

The COVID-19 pandemic has led to the commercialization of many antigen-based rapid diagnostic tests (Ag-RDTs), requiring independent evaluations. This report describes the clinical evaluation of the Novel Coronavirus 2019-nCoV Antigen Test (Colloidal Gold) (Beijing Hotgen Biotech Co., Ltd.), at two sites within Brazil and one in the United Kingdom. The collected samples (446 nasal swabs from Brazil and 246 nasopharyngeal samples from the UK) were analyzed by the Ag-RDT and compared to reverse transcription-quantitative PCR (RT-qPCR). Analytical evaluation of the Ag-RDT was performed using direct culture supernatants of SARS-CoV-2 strains from the wild-type (B.1), Alpha (B.1.1.7), Delta (B.1.617.2), Gamma (P.1), and Omicron (B.1.1.529) lineages. An overall sensitivity and specificity of 88.2% (95% confidence interval [CI], 81.3 to 93.3) and 100.0% (95% CI, 99.1 to 100.0), respectively, were obtained for the Brazilian and UK cohorts. The analytical limit of detection was determined as 1.0 × 103 PFU/mL (Alpha), 2.5 × 102 PFU/mL (Delta), 2.5 × 103 PFU/mL (Gamma), and 1.0 × 103 PFU/mL (Omicron), giving a viral copy equivalent of approximately 2.1 × 104 copies/mL, 9.0 × 105 copies/mL, 1.7 × 106 copies/mL, and 1.8 × 105 copies/mL for the Ag-RDT, respectively. Overall, while a higher sensitivity was claimed by the manufacturers than that found in this study, this evaluation finds that the Ag-RDT meets the WHO minimum performance requirements for sensitivity and specificity of COVID-19 Ag-RDTs. This study illustrates the comparative performance of the Hotgen Ag-RDT across two global settings and considers the different approaches in evaluation methods. IMPORTANCE Since the beginning of the SARS-CoV-2 pandemic, we have witnessed growing numbers of antigen rapid diagnostic tests (Ag-RDTs) being brought to market. In the United Kingdom, this was somewhat controlled indirectly as the government offered free tests from a small number of companies. However, as this has now ceased, individuals are responsible for their own acquisition of test kits. Similarly in Brazil, as of January 2022, pharmacies and other health care retailers are permitted to sell Ag-RDTs directly to the community. Many of these Ag-RDTs have not been externally evaluated, and results are not readily available to the public. Thus, there is now a need for a transparent evaluation of Ag-RDTs with both analytical and clinical evaluation. We present an independent review of the Novel Coronavirus 2019-nCoV Antigen Test (Colloidal Gold) (Beijing Hotgen Biotech Co., Ltd.), at two sites within Brazil and one in the United Kingdom.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil , COVID-19/diagnóstico , Pandemias , Reino Unido , Coloide de Ouro
16.
IJID Reg ; 5: 163-164, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36345367

RESUMO

Bioaerosol capture and analysis is emerging as a non-invasive diagnostic method for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this proof-of-concept study conducted in Lesotho, we evaluated the novel and simple AL2 bioaerosol detection device in comparison to conventional nasopharyngeal sampling methods. We demonstrated for the first time that SARS-CoV-2 can be detected using the AL2 bioaerosol capture device. However, studies with a larger sample size are needed to further evaluate this bioaerosol capture device for the detection of SARS-CoV-2.

17.
Microbiol Spectr ; 10(5): e0122922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36066256

RESUMO

Access to reverse transcription-PCR (RT-PCR) testing, the gold standard for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection, is limited throughout the world, due to restricted resources, available infrastructure, and high costs. Antigen-detecting rapid diagnostic tests (Ag-RDTs) overcome some of these barriers, but independent clinical validations in settings of intended use are scarce. To inform the World Health Organization's (WHO) emergency use listing (EUL) procedure and ensure affordable, high-quality Ag-RDTs, we assessed the performance and ease of use of the SureStatus for SARS-CoV-2. For this prospective, multicenter diagnostic accuracy study, we recruited unvaccinated participants with presumed SARS-CoV-2 infection in India and Germany from December 2020 to March 2021, when the Alpha (B.1.1.7) variant was predominantly circulating. Paired swabs were performed for (i) routine clinical RT-PCR testing (sampling was either nasopharyngeal [NP] or combined NP and oropharyngeal [NP/OP]) and (ii) Ag-RDT (sampling was NP). Performance of the Ag-RDT was compared to RT-PCR overall and by predefined subgroups, e.g., cycle threshold (CT) value, symptoms, and days from symptom onset. To understand the usability, a system usability scale (SUS) questionnaire and ease-of-use (EoU) assessment were performed. A total of 1,119 participants were included in the analysis, of whom 205 (18.3%) were RT-PCR positive. SureStatus detected 169 out of 205 RT-PCR-positive participants, reporting a sensitivity of 82.4% (95% confidence interval [CI]: 76.6% to 87.1%) and a specificity of 98.5% (95% CI: 97.4% to 99.1%). In the first 7 days post-symptom onset, the sensitivity was 90.7% (95% CI: 83.5% to 94.9%), when CT values were low and viral loads were high. The test was characterized as easy to use (SUS, 85/100) and considered suitable for point-of-care settings, although quality concerns were raised due to visibly contaminated packaging of swabs included in the test kits. The SureStatus diagnostic test can be considered a reliable test during the first week of SARS-CoV-2 infection, with high sensitivity in combination with excellent usability. IMPORTANCE Our manufacturer-independent, prospective diagnostic accuracy study assessed clinical performance in participants presumed to have a SARS-CoV-2 infection at three study sites in two countries. We assessed the accuracy overall and in predefined subgroups (CT values and symptom duration). SureStatus performed with high sensitivity. Its sensitivity was particularly high in the first 3 days after symptom onset and when CT values were low (i.e., the viral load was high). The system usability and ease-of-use assessment complements the accuracy assessment of the test and highlights critical factors to facilitate the widespread use of SureStatus in point-of-care settings. The high sensitivity demonstrated by the evaluated Ag-RDT within the first days of symptoms, when most transmission occurs, supports the role of Ag-RDTs for public health-relevant screening. Evidence from this study was used to inform the World Health Organization Emergency Use Listing procedure.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Testes Diagnósticos de Rotina , Sistemas Automatizados de Assistência Junto ao Leito , Estudos Prospectivos , Sensibilidade e Especificidade , Organização Mundial da Saúde
18.
J Infect Dis ; 226(8): 1412-1417, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35921539

RESUMO

We evaluated the performance of nasal and nasopharyngeal Standard Q COVID-19 [coronavirus disease 2019] Ag tests (SD Biosensor) and the Panbio COVID-19 Ag Rapid Test Device (nasal; Abbott) against the Abbott RealTime severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) assay during the Omicron (clades 21M, 21K, and 21L) wave in South Africa. Overall, all evaluated tests performed well, with high sensitivity (range, 77.78%-81.42%) and excellent specificity values (>99%). The sensitivity of rapid antigen tests increased above 90% in samples with cycle threshold <20, and all 3 tests performed best within the first week after symptom onset.


Assuntos
COVID-19 , SARS-CoV-2 , Antígenos Virais , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Sensibilidade e Especificidade , África do Sul
19.
Sci Rep ; 12(1): 10844, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760977

RESUMO

Tuberculosis (TB) remains a leading infectious disease killer globally. Treatment outcomes are especially poor among people with extensively drug-resistant (XDR) TB, until recently defined as rifampicin-resistant (RR) TB with resistance to an aminoglycoside (amikacin) and a fluoroquinolone (ofloxacin). We used laboratory TB test results from Western Cape province, South Africa between 2012 and 2015 to identify XDR-TB and pre-XDR-TB (RR-TB with resistance to one second-line drug) spatial hotspots. We mapped the percentage and count of individuals with RR-TB that had XDR-TB and pre-XDR-TB across the province and in Cape Town, as well as amikacin-resistant and ofloxacin-resistant TB. We found the percentage of pre-XDR-TB and the count of XDR-TB/pre-XDR-TB highly heterogeneous with geographic hotspots within RR-TB high burden areas, and found hotspots in both percentage and count of amikacin-resistant and ofloxacin-resistant TB. The spatial distribution of percentage ofloxacin-resistant TB hotspots was similar to XDR-TB hotspots, suggesting that fluoroquinolone-resistace is often the first step to additional resistance. Our work shows that interventions used to reduce XDR-TB incidence may need to be targeted within spatial locations of RR-TB, and further research is required to understand underlying drivers of XDR-TB transmission in these locations.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Amicacina/farmacologia , Amicacina/uso terapêutico , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Ofloxacino , África do Sul/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
20.
Cochrane Database Syst Rev ; 5: CD014841, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583175

RESUMO

BACKGROUND: The World Health Organization (WHO) End TB Strategy stresses universal access to drug susceptibility testing (DST). DST determines whether Mycobacterium tuberculosis bacteria are susceptible or resistant to drugs. Xpert MTB/XDR is a rapid nucleic acid amplification test for detection of tuberculosis and drug resistance in one test suitable for use in peripheral and intermediate level laboratories. In specimens where tuberculosis is detected by Xpert MTB/XDR, Xpert MTB/XDR can also detect resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. OBJECTIVES: To assess the diagnostic accuracy of Xpert MTB/XDR for pulmonary tuberculosis in people with presumptive pulmonary tuberculosis (having signs and symptoms suggestive of tuberculosis, including cough, fever, weight loss, night sweats). To assess the diagnostic accuracy of Xpert MTB/XDR for resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin in people with tuberculosis detected by Xpert MTB/XDR, irrespective of rifampicin resistance (whether or not rifampicin resistance status was known) and with known rifampicin resistance. SEARCH METHODS: We searched multiple databases to 23 September 2021. We limited searches to 2015 onwards as Xpert MTB/XDR was launched in 2020. SELECTION CRITERIA: Diagnostic accuracy studies using sputum in adults with presumptive or confirmed pulmonary tuberculosis. Reference standards were culture (pulmonary tuberculosis detection); phenotypic DST (pDST), genotypic DST (gDST),composite (pDST and gDST) (drug resistance detection). DATA COLLECTION AND ANALYSIS: Two review authors independently reviewed reports for eligibility and extracted data using a standardized form. For multicentre studies, we anticipated variability in the type and frequency of mutations associated with resistance to a given drug at the different centres and considered each centre as an independent study cohort for quality assessment and analysis. We assessed methodological quality with QUADAS-2, judging risk of bias separately for each target condition and reference standard. For pulmonary tuberculosis detection, owing to heterogeneity in participant characteristics and observed specificity estimates, we reported a range of sensitivity and specificity estimates and did not perform a meta-analysis. For drug resistance detection, we performed meta-analyses by reference standard using bivariate random-effects models. Using GRADE, we assessed certainty of evidence of Xpert MTB/XDR accuracy for detection of resistance to isoniazid and fluoroquinolones in people irrespective of rifampicin resistance and to ethionamide and amikacin in people with known rifampicin resistance, reflecting real-world situations. We used pDST, except for ethionamide resistance where we considered gDST a better reference standard. MAIN RESULTS: We included two multicentre studies from high multidrug-resistant/rifampicin-resistant tuberculosis burden countries, reporting on six independent study cohorts, involving 1228 participants for pulmonary tuberculosis detection and 1141 participants for drug resistance detection. The proportion of participants with rifampicin resistance in the two studies was 47.9% and 80.9%. For tuberculosis detection, we judged high risk of bias for patient selection owing to selective recruitment. For ethionamide resistance detection, we judged high risk of bias for the reference standard, both pDST and gDST, though we considered gDST a better reference standard. Pulmonary tuberculosis detection - Xpert MTB/XDR sensitivity range, 98.3% (96.1 to 99.5) to 98.9% (96.2 to 99.9) and specificity range, 22.5% (14.3 to 32.6) to 100.0% (86.3 to 100.0); median prevalence of pulmonary tuberculosis 91.3%, (interquartile range, 89.3% to 91.8%), (2 studies; 1 study reported on 2 cohorts, 1228 participants; very low-certainty evidence, sensitivity and specificity). Drug resistance detection People irrespective of rifampicin resistance - Isoniazid resistance: Xpert MTB/XDR summary sensitivity and specificity (95% confidence interval (CI)) were 94.2% (87.5 to 97.4) and 98.5% (92.6 to 99.7) against pDST, (6 cohorts, 1083 participants, moderate-certainty evidence, sensitivity and specificity). - Fluoroquinolone resistance: Xpert MTB/XDR summary sensitivity and specificity were 93.2% (88.1 to 96.2) and 98.0% (90.8 to 99.6) against pDST, (6 cohorts, 1021 participants; high-certainty evidence, sensitivity; moderate-certainty evidence, specificity). People with known rifampicin resistance - Ethionamide resistance: Xpert MTB/XDR summary sensitivity and specificity were 98.0% (74.2 to 99.9) and 99.7% (83.5 to 100.0) against gDST, (4 cohorts, 434 participants; very low-certainty evidence, sensitivity and specificity). - Amikacin resistance: Xpert MTB/XDR summary sensitivity and specificity were 86.1% (75.0 to 92.7) and 98.9% (93.0 to 99.8) against pDST, (4 cohorts, 490 participants; low-certainty evidence, sensitivity; high-certainty evidence, specificity). Of 1000 people with pulmonary tuberculosis, detected as tuberculosis by Xpert MTB/XDR: - where 50 have isoniazid resistance, 61 would have an Xpert MTB/XDR result indicating isoniazid resistance: of these, 14/61 (23%) would not have isoniazid resistance (FP); 939 (of 1000 people) would have a result indicating the absence of isoniazid resistance: of these, 3/939 (0%) would have isoniazid resistance (FN). - where 50 have fluoroquinolone resistance, 66 would have an Xpert MTB/XDR result indicating fluoroquinolone resistance: of these, 19/66 (29%) would not have fluoroquinolone resistance (FP); 934 would have a result indicating the absence of fluoroquinolone resistance: of these, 3/934 (0%) would have fluoroquinolone resistance (FN). - where 300 have ethionamide resistance, 296 would have an Xpert MTB/XDR result indicating ethionamide resistance: of these, 2/296 (1%) would not have ethionamide resistance (FP); 704 would have a result indicating the absence of ethionamide resistance: of these, 6/704 (1%) would have ethionamide resistance (FN). - where 135 have amikacin resistance, 126 would have an Xpert MTB/XDR result indicating amikacin resistance: of these, 10/126 (8%) would not have amikacin resistance (FP); 874 would have a result indicating the absence of amikacin resistance: of these, 19/874 (2%) would have amikacin resistance (FN). AUTHORS' CONCLUSIONS: Review findings suggest that, in people determined by Xpert MTB/XDR to be tuberculosis-positive, Xpert MTB/XDR provides accurate results for detection of isoniazid and fluoroquinolone resistance and can assist with selection of an optimised treatment regimen. Given that Xpert MTB/XDR targets a limited number of resistance variants in specific genes, the test may perform differently in different settings. Findings in this review should be interpreted with caution. Sensitivity for detection of ethionamide resistance was based only on Xpert MTB/XDR detection of mutations in the inhA promoter region, a known limitation. High risk of bias limits our confidence in Xpert MTB/XDR accuracy for pulmonary tuberculosis. Xpert MTB/XDR's impact will depend on its ability to detect tuberculosis (required for DST), prevalence of resistance to a given drug, health care infrastructure, and access to other tests.


Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Adulto , Amicacina/farmacologia , Amicacina/uso terapêutico , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/uso terapêutico , Farmacorresistência Bacteriana/genética , Etionamida/farmacologia , Etionamida/uso terapêutico , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Rifampina/uso terapêutico , Sensibilidade e Especificidade , Tuberculose dos Linfonodos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...